生物学杂志

• 研究报告 • 上一篇    下一篇

不同小麦品种籽粒产量对低氮胁迫的响应及其与旗叶光合特性的关系

  

  1. 1. 安徽大学 资源与环境工程学院, 合肥 230601;2. 中国科学院 合肥物质科学研究院 技术生物与农业工程研究所, 合肥 230031
  • 出版日期:2018-12-18 发布日期:2018-12-18
  • 通讯作者: 王钰,教授,主要从事植物生态研究,E-mail: yuwang800@hotmail.com
  • 作者简介:谢枫,硕士,研究方向为农业生态系统与种质资源利用,E-mail: 2353545282@qq.com
  • 基金资助:
    国家自然科学基金项目(31601828);国家重点研发计划(2017YFD0301302);中国科学院科技服务网络计划(STS)项目(KFJ-STS-QYZD-020, KFJ-STS-ZDTP-002) 

Yield response of wheat cultivars to low nitrogen stress and its  relationship with photosynthetic traits in flag leaves

  1. 1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601;2. Institute of Technical Biology & Agriculture Engineering, Hefei Institutes of Physical Science,Chinese Academy of Sciences, Hefei 230031, China
  • Online:2018-12-18 Published:2018-12-18

摘要: 筛选和应用耐低氮胁迫小麦品种是减少氮肥投入、改善农田生产力的重要途径。以具有产量梯度的7个代表性小麦品种为材料,通过田间试验和水培试验,于2016—2017年研究了不同品种小麦籽粒产量对低氮胁迫的响应,筛选适于评价小麦耐低氮胁迫能力的光合特征参数,以期为优化氮肥投入、指导小麦生产提供理论依据。田间试验在低氮胁迫试验田设置7个小麦品种:洛旱6、石麦15、许科316、先麦10、良星99、西农979和百农418。水培试验设置15个处理,为3个典型小麦品种(洛旱6、先麦10和良星99)和5个氮素浓度(0、5、10、20和40 mmol/L)的组合。田间试验和水培试验均采用随机区组设计。试验结果表明,耐低氮胁迫品种良星99相对于低氮胁迫敏感品种洛旱6可提高小麦籽粒产量11.6%。在低氮胁迫条件下,不论田间或水培环境,耐低氮胁迫小麦品种较高的籽粒产量均以较高的净光合速率、蒸腾速率、气孔导度和羧化效率为生理基础。综上,通过筛选和应用耐低氮胁迫小麦品种对提高低氮胁迫下小麦生产力具有实际意义;借助光合生理参数可以为初步筛选耐低氮胁迫小麦品种提供科学借鉴。

关键词: 小麦, 光合响应, 低氮胁迫, 籽粒产量, 水培

Abstract: Selection and application of low nitrogen tolerant wheat cultivars (Triticum aestivum L.) is a possible option for reducing nitrogen input, increasing grain yield and improving land productivity. Seven representative wheat cultivars, with different yield levels, were used as tested material. Field experiment and laboratory hydroponics experiment were conducted during 2016- 2017 wheat growing season with the following objectives as: (i) to assess the yield response of different wheat cultivars to low nitrogen stress; (ii) to determine the photosynthetic mechanisms and the feasible photosynthetic parameters for selection of low nitrogen tolerant wheat cultivars. The field experiment consisted of 7 treatments (wheat cultivar), i.e., ‘Luohan 6’, ‘Shimai 15’, ‘Xuke 316’, ‘Xianmai 10’, ‘Liangxing 99’, ‘Xinong 979’, and ‘Bainong 418’. The laboratory hydroponics experiment consisted of 15 treatments, i.e., the combinations of 3 representative wheat cultivars (‘Luohan 6’, ‘Xianmai 10’, and ‘Liangxing 99’) and 5 nitrogen supply levels (0, 5, 10, 20, and 40 mmol/L). Field experiment and laboratory hydroponics experiment both followed a randomized block design. The results showed that the low nitrogen tolerant wheat cultivar ‘Liangxing 99’ increased wheat yield by 11.6% when compared with low nitrogen sensitive cultivar ‘Luohan 6’. Under low nitrogen stress in both field and laboratory experiments, low nitrogen tolerant wheat cultivars had relatively greater net photosynthetic rate, transpiration rate, stomatal conductance, and carboxylation efficiency. Low nitrogen tolerant wheat cultivars can be preliminarily selected by using hydroponics experiments with the above-mentioned photosynthetic parameters as evaluation indicators. Overall, selection and application of low nitrogen tolerant wheat cultivars is of great significance to improving wheat productivity under low nitrogen stress. Some photosynthetic traits can be used to select low nitrogen tolerant wheat cultivars.

Key words: wheat, photosynthetic response, low nitrogen stress, grain yield, hydroponics

中图分类号: