生物学杂志 ›› 2025, Vol. 42 ›› Issue (5): 1-.doi: doi:10.3969/j.issn.2095-1736.2025.05.001

• 特约综述 •    下一篇

人工智能驱动的蛋白质结构预测进展与应用前景

朱吕帅, 李志鹏, 刘欣悦, 叶 盛   

  1. 安徽大学 人工智能学院 安徽省无人系统与智能技术工程研究中心, 合肥 230601
  • 出版日期:2025-10-18 发布日期:2025-10-14
  • 通讯作者: 叶盛,教授,研究方向为人工智能驱动的蛋白质与分子逆向设计和谱—构—效机制探索,E-mail:yess@ahu.edu.cn。 叶盛,安徽大学人工智能学院教授,安徽省无人系统与智能技术工程研究中心副主任,安徽省通用人工智能领域战略咨询专家,中国科学院百篇优秀博士学位论文获得者。曾获得中国科学院院长奖特别奖、中国化学会京博科技奖优秀博士论文奖等荣誉奖励。聚焦人工智能与量子化学交叉领域,系统性地发展了结合量子化学与人工智能的蛋白质光谱模拟方法以及基于物理“谱—构—效”规则的蛋白质智能从头设计方法。近5年以第一作者或通信作者在国际知名期刊发表论文20余篇,多项研究工作被Science专文推荐点评。所开发的蛋白质光谱人工智能模拟软件目前已在中国科学技术大学、南京大学、南京南欣医药技术研究院有限公司、美国加州大学尔湾分校、英国诺丁汉大学、英国杜伦大学等单位应用。
  • 作者简介:朱吕帅,硕士研究生,研究方向为人工智能驱动的蛋白质与分子逆向设计和谱—构—效机制探索,E-mail:lushuaizhu722@gmail.com
  • 基金资助:
    国家自然科学基金项目(22203001)

Progress and prospects of AI-driven protein structure prediction

ZHU Lyushuai, LI Zhipeng, LIU Xinyue, YE Sheng   

  1. Anhui Provincial Engineering Research Center for Unmanned Systems and Intelligent Technology,
    School of Artificial Intelligence, Anhui University, Hefei 230601, China
  • Online:2025-10-18 Published:2025-10-14

摘要: 蛋白质是生命活动的核心分子,其三维结构决定了其生物功能与作用机制。尽管X射线晶体学、核磁共振和冷冻电镜等实验方法在结构解析方面取得了丰硕成果,但仍面临成本高、耗时长和适用性受限的挑战。近年来,人工智能尤其是深度学习技术的飞速发展,为蛋白质结构预测带来了革命性突破。从早期的统计能量函数和同源建模,到融入注意力机制和大规模参数化网络的前沿深度学习模型,预测精度与速度均得到了显著提升。以AlphaFold和RoseTTAFold为代表的算法不仅在静态结构预测上屡创佳绩,还在变异体筛选、药物设计和精准医学等领域展现出广阔应用前景。此外,还系统阐述了基于蛋白质语言模型(如ESM-3)的结构预测方法,同时进一步探讨了基于光谱描述符和基于大规模生物物理采样增强的深度学习这两类探索性动态结构预测策略,并评估了它们的研究进展与应用潜力,为未来研究提供理论与实践参考。

关键词: 蛋白质结构预测, 人工智能, AlphaFold, RoseTTAFold, ESM-3, 光谱描述符

Abstract: Proteins are fundamental molecules central to life activity, with their three-dimensional structures determining their biological functions and mechanisms of action. Although experimental methods such as X-ray crystallography, nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryo-EM) have achieved significant success in structural elucidation, they still face challenges such as high cost, long time consumption, and limited applicability. In recent years, rapid advancements in artificial intelligence, particularly deep learning techniques, have revolutionized protein structure prediction. From early statistical energy functions and homology modeling to cutting-edge deep learning models integrating multi-head attention mechanisms and large-scale parameterized networks, there have been substantial improvements in both prediction accuracy and efficiency. Algorithms represented by AlphaFold and RoseTTAFold have not only consistently achieved remarkable results in static structure prediction but also demonstrated broad application prospects in variant screening, drug design, and precision medicine. Furthermore, this review systematically presents structure-prediction methods based on protein language models (such as ESM-3), and further explores two categories of exploratory strategies-those based on spectral descriptors and those employing sampling-augmented deep learning with large-scale biophysical data-while assessing their research progress and application potential, thereby providing theoretical and practical guidance for future studies.

Key words: protein structure prediction, artificial intelligence, AlphaFold, RoseTTAFold, ESM-3, spectral descriptors

中图分类号: