生物学杂志 ›› 2025, Vol. 42 ›› Issue (3): 15-.doi: 10.3969/j.issn.2095-1736.2025.03.015

• 研究报告 • 上一篇    下一篇

反硝化生物滤池深度脱氮效能预测EGA-BPNN模型构建

陶 健, 姜芳媛, 石先阳   

  1. 安徽大学 资源与环境工程学院, 合肥 230601
  • 出版日期:2025-06-18 发布日期:2025-06-16
  • 通讯作者: 石先阳,博士,教授,研究方向为污染控制与修复,E-mail:shixi381@163.com
  • 作者简介:陶健,硕士研究生,研究方向为水污染控制与数学模拟,E-mail:17555121092@163.com
  • 基金资助:
    2020年安徽省科技重大专项项目(202003a07020014)

Construction of EGA-BPNN model for prediction of deep nitrogen removal efficiency of denitrifying biological filter 

TAO Jian, JIANG Fangyuan, SHI Xianyang   

  1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
  • Online:2025-06-18 Published:2025-06-16

摘要: 为准确预估不同外碳源和C/N条件下反硝化生物滤池(DNBF)的深度脱氮效能,基于支持向量回归(SVR)和BP神经网络(BPNN)建立DNBF深度脱氮预测模型,并结合进化算法进行模型优化。通过DNBF实验数据进行模型训练和泛化能力验证,并根据性能评价指标确定最优预测模型。结果表明:SVR(R2=0.904)对TN去除率的预测性能优于BPNN(R2=0.876),经进化算法优化后的差分进化算法(DE)-SVR、精英保留的遗传算法(EGA)-BPNN对比SVR、BPNN,R2分别提升了1.5%、11.5%,EGA-BPNN对TN去除率、NO2-N质量浓度、NO3-N质量浓度预测的R2分别为0.991、0.971、0.926,均显著优于其他模型,表明利用进化算法同步优化神经网络结构和模型参数,有效提升了模型的性能;EGA-BPNN对沿程脱氮指标TN、NO2-N、NO3-N和COD质量浓度预测的R2分别为0.969、0.980、0.974、0.864,进一步验证了该模型具有较好的泛化能力,能有效预测不同外碳源投加策略下的DNBF脱氮效能。

关键词: 反硝化生物滤池, 外碳源, 支持向量回归, BP神经网络, 进化算法

Abstract:  The deep nitrogen removal efficiency of the denitrifying biological filter (DNBF) was accurately estimated under different external carbon sources and C/N conditions by establishing a DNBF deep nitrogen removal prediction model based on support vector regression (SVR) and BP neural network (BPNN), which was further optimized using an evolutionary algorithm. The model was trained and its generalization ability was verified using experimental data from DNBF, with the optimal prediction model determined based on evaluation parameters. Results showed that SVR had better prediction performance for TN removal rate (R2=0.904) compared to BPNN (R2=0.876). By applying differential evolution algorithm (DE)-SVR and elite retention Genetic algorithm (EGA)-BPNN optimized by evolutionary algorithm, improvements of 1.5% and 11.5% were achieved respectively, compared to SVR and BPNN models. EGA-BPNN demonstrated significantly better predictions for TN removal rate, NO2-N mass concentration, and NO3-N mass concentration with R2 values of 0.991, 0.971, and 0.926 respectively when compared to other models; indicating that the structure and model parameters of the neural network were effectively optimized through the evolutionary algorithm resulting in improved model performance. Additionally, EGA-BPNN exhibited good generalization ability as evidenced by R2 values of 0.969 for TN mass concentration, 0.980 for NO2-N mass concentration, 0.974 for NO3-N mass concentration, and 0.864 for COD mass concentration, thus confirming its effectiveness in predicting nitrogen removal efficiency of DNBF under different external carbon source strategies.

Key words: denitrifying biofilters, external carbon sources, support vector regression, back-propagation neural network, evolutionary algorithm

中图分类号: